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LENNARD-JONES ELASTIC MODULI BY LIQUID 
STRUCTURE INTEGRAL EQUATIONS 

AND MOLECULAR DYNAMICS COMPUTER 
SIMULATIONS 

D. M. HEYES 

Department of Chemistry, Royal Holloway and Bedford New College, 
University of London, Egham, Surrey TWZO OEX, UK. 

(Receioed 3 January 1989) 

The infinite frequency shear modulus, G, , and compressional modulus, K,, of the Lennard-Jones, LJ, fluid 
have been determined over essentially the whole phase diagram at densities below the solid-fluid 
coexistence line using PY, HNC, and Rogers and Young (RY) closures of the Ornstein-Zernike relation. At 
low density PY is best at reproducing simulation G,, and K , ,  whereas close to the coexistence line, above 
the critical temperature, the RY closure is best and is remarkably accurate. Agreement is poorest for all 
three closures below in the liquid phase. 

KEY WORDS: Shear and bulk infinite frequency modulus, Lennard-Jones, integral equations, 
computer simulations. 

1 INTRODUCTION 

The infinite frequency shear, G,, and bulk moduli, K,, of single component fluids 
play a central role in interpreting their viscoelastic behaviour’. The values of G, and 
K ,  have been determined by Molecular Dynamics computer simulation and para- 
meterised for a simple fluid such as the Lennard-Jones fluid2v3. However no such 
thorough study of the available integral equation methods has been made, to examine 
how satisfactory they are in reproducing these moduli. The infinite frequency moduli 
can be derived directly from the structure of the fluid at the level of the pair radial 
distribution function, g(r). The Ornstein-Zernike equation is a path to ~ ( r ) ~ , ~ ,  

h ( r )  = c(r) + P drc(Ir - fl)h(~’), (1)  s 
where p is the number density, c(r) is the direct correlation function and the total 
correlation function, h(r) ,  is, 
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Figure 1 
(squares) at T =  1.06 and p = 0.731. N = 256 in the M D  simulations. 

Comparison between the pair radial distribution functions generated by MD (solid lines) and PY 

k 

Figure 2 Comparison between the pair radial distribution functions generated by MD (solid lines) and 
HNC (squares) at T = 1.06 and p = 0.731. N = 256 in the M D  simulations. 
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Figure 3 Comparison between the pair radial distribution functions generated by M D  (solid lines) and RY 
(squares) at T = 1.06 and p = 0.731. N = 256 in the MD simulations. 

then Eq. ( 1 )  can be solved with an arbitrary closure relation. We will consider three 
possibilities. 

Percus- Yevick, P Y 

where B = l/(k,T) and 4(r) is the interatomic potential. This closure has been the 
subject of numerous treatments of the Lennard-Jones fluid5-I4. Therefore, using Eqs. 
(2) and (3) we have, 

( 5 )  d r )  = ( 1 + y(r)>exp( - BM.1). 

Hypernetted Chain4 

and 

Rogers- Young, R Y' 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



118 

3 

2.5 

g ld  
2 -  

1 . 5  

D. M. HEYES 

- 

- 

a 

IS 

2 li G 3 

t 
Figure 4 Comparison between the pair radial distribution functions generated by M D  (solid lines) and PY 
(squares) at T = 0.722 and p = 0.8442. N = 256 in the MD simulations. 

where, 

f ( r )  = 1 - exp( -w), (9) 
The arbitrary parameter, a, has an optimum value, - 1/2,15 and it was set to 1/2 in this 
study. We have, 

The properties of interest are the internal energy E and the pressure P ,  

E / ( k , T )  = 3/2 + 
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Figure 5 Comparison between the pair radial distribution functions generated by M D  (solid lines) and 
H N C  (squares) at T = 0.722 and p = 0.8442. N = 256 in the M D  simulations. 

1 

2 .F 

' 
glr)  

1 . c  

I 

0 . c  

c 

14 

E a 

r 
Figure 6 
(squares) at T = 0.722 and p = 0.8442. N = 256 in the M D  simulations. 

Comparison between the pair radial distribution functions generated by M D  (solid lines) and R Y  
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Figure 7 Comparison between the pair radial distribution functions generated by MD (solid lines) and P Y  
(squares) at T = 6.0 and p = 1.18. N = 256 in the MD simulations. 
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Figure 8 Comparison between the pair radial distribution functions generated by MD (solid lines) and 
HNC (squares) at T = 6.0 and p = 1.18. N = 256 in the M D  simulations. 
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Figure 9 Comparison between the pair radial distribution functions generated by M D  (solid lines) and R Y 
(squares) at T = 6.0 and p = 1.18. N = 256 in the M D  simulations. 

Alternatively, 

x T  = 1 + 4np jomrzh(r)dr.  

The infinite frequency shear and bulk moduli are expressible in terms of the potential 
energy components reduced from the expressions of Zwanzig and Mo~ntain'~9''. For 
the infinite-frequency shear modulus, G,, 

For the infinite-frequency compressional modulus, K ,, 

K ,  =-pkBT 2 + P + 2np2 ~ jOmdrg(r)r3 dr ( r  g). 
3 9 

The particles in a Lennard-Jones fluid interact via a pair potential, b ( r ) ,  

+ ( r )  = 4&((o/r)12 - (a /r )6) .  (17) 

The moduli can be reduced to the following simple expressions for the LJ fluid, 

G, = pkBT + p(lO8@,, + t8Q6)/15, (18) 
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i- 

Figure 10 Comparison between the y ( r )  obtained by the different closure relations: PY (solid line), H N C  
(squares) and RY (triangles), T = 1.06 and p = 0.731. 

where (D12 and (D6 are the r-  l 2  and r-6 components of (D, the configurational energy 
per particle ( E  = 3 k B T / 2  + (D). Similarly for the bulk compressional modulus, 

K ,  = 5 p k ~ T / 3  + P(20@,, 6@6). (19) 

2 THE INTEGRAL EQUATION ALGORITHM 

The standard Picard/Broyles method was used to solve Eqs. ( 1 ) - ( 3 )  coupled with a 
particular choice of the closure relationship. We will consider the P Y  closure of Eq. (4) 
specifically but the procedure is common to them all. Substituting Eq. (3) in Eq. (1) we 
have, 

?4r) = P &'c( Ir - f I )Cr(r'> + c(r')13 s 
Now if we define the following Fourier transforms, 

E(k) = c(r)exp(ik. r)dr s 
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Figure I 1  
(squares) and R Y  (triangles), T =  1.06 and p = 0.731. 

Comparison between the c ( r )  obtained by the different closure relations: P Y (solid line), H N C  

r 
Figure I2 
(squares) and R Y  (triangles), T = 0.722 and p = 0.8442. 

Comparison between the y ( r )  obtained by the different closure relations: P Y (solid line), H N C  
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Figure 13 Comparison between the c(r) obtained by the different closure relations: P Y  (solid line), H N C  
(square) and R Y  (triangles), T = 0.722 and p = 0.8442. 
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Figure 14 Comparison between the y ( r )  obtained by the different closure relations: P Y  (solid line), H N C  
(squares) and RY (triangles), T = 6.0 and p = 1.18. 
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Figure 15 
(squares) and R Y  (triangles), T = 6.0 and p = 1.18. 

Comparison between the c(r )  obtained by the different closure relations: P Y (solid line), H N C  

then, 

r* = pd? + pdd, 

The can be Fourier transformed from k space to r space, 

The cycle is completed by substituting the result of Eq. (24) back into the P Y  closure 
relationship, 

c(r) = ( 1 + y(r))(exp( - P4W) - 1 1 7  (25) 
For H N C  Eq. (6) would be used instead and for R Y  Eq. (8) would be used. The cycle 
starting from Eq. (21) is repeated until convergence is reached. 
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The technical details are as follows. The distance range covered is partitioned into 
N intervals, Ar, ri = iAr. Similarly, for k-space, ki = 2ni/(NAr), therefore rjkj = 
2nij/N. All r - and k-dependent functions are evaluated at r and k intervals as follows, 

where Ak = 2n/(NAr), 

c; = ci, 

At  high density we facilitate convergence by ‘mixing in’ a certain fraction of the old 
direct correlation function, cy, with the ‘new’ function, ci, 

with a value of 6 = 0.5 being typical. This damps down oscillations between 
consecutive iterations. It was found not necessary to resort to the Gillan Method4 to 
achieve the objectives of this work. The convergence criterion was, 

N 

i =  1 

choosing E = Equation (27) is now returned to and the cycle to equation (33) is 
repeated. Here, N = 1600 and Ar = 0.0250. 

I t  is worth noting that even at the densest states convergence only takes - several 
minutes on a microcomputer making use of Discrete Fourier Transform (NAG) 
library routines. Implementation of the integral equations is significantly easier than 
20-30 years ago when these equations were first solved numerically. Computations 
were carried out on a VAX 11/780 at the Royal Holloway & Bedford New College 
Computer Centre. 
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3 THE MD METHOD 

The basic technique for simulating the LJ molecules has been described 
elsewhere’s~ly. The MD simulations were performed on a cubic unit cell of volume V 
containing N = 256 Lennard-Jones (LJ) particles of mass, m. The interactions were 
truncated at rc = 2.50. A large time step version of the Verlet algorithm was used to 
increment the positions of the moleculesz0. We use LJ reduced units throughout, e.g., 
k ,  TIE -+ T, and number density, p = Na3/V. The moduli are in E O - ~ .  The temperature 
was fixed by the Gaussian isokinetic scheme2’. 

4 RESULTS AND DISCUSSION 

A summary of the properties from Eqs. ( 1  1 )  to (19) is presented in Table 1. These 
are compared with simulation and LJ simulation-fitted equation of state predictions 
for the same quantities. All states are in the fluid phase. The equation of state internal 
energy agrees better than the pressure with the integral equation predictions, as noted 
elsewhereI3. Table 1 reveals that at low to intermediate densities all three closures give 
good agreement with ‘exact’ (simulation) values for the elastic moduli. Agreement is 
usually within 2-3 %, being slightly better for P Y  than H N C  or RY. Close to the solid 
phase boundary these integral equations are severely tested because many-body 
correlations start to increase in complexity. (In the low density limit the two-body 
distribution function, g ( r ) ,  suffices to account for all physical properties.) At high 
temperature (9 K ) ,  the R Y closure gives by far the most superior agreement with the 
simulation moduli. I t  is significantly better than P Y  or H N C .  The 2-3 % agreement 
with the simulation values is maintained. The PY underestimates the elastic moduli 
by - 10% and the H N C  overestimates the moduli by - 10%. 

The most severe test of these integral equations is at high density (near the 
maximum liquid density) and low temperature (below the critical temperature 
(z 1.3)). We note that all closure relationships overestimate the elastic moduli by 

For the first time fluid structure integral equations have been used to predict the 
elastic moduli of the Lennard-Jones fluid over an appreciable region of the phase 
diagram. Perhaps the main conclusion to come out of these calculations and MD 
simulations is that the closure of Rogers and Young provides startlingly good elastic 
(and thermodynamic quantities) at high density and temperature. It is recommended 
in studies of the elastic moduli of sterically stabilised dense suspensions where the 
colloidal particle interactions are essentially repulsive. 

5-10?;. 

Acknowledgements 

D.M.H. gratefully thanks The Royul Society for the award of a Royal Socirry 1983 University Research 
Fdowship .  Dr. W. Smith (TCS. S.E.R.C. Daresbury Laboratory) is thanked for helpful discussions 
concerning Fast Fourier Transforms. The award of computer time to perform the simulations from the 
S.E.R.C. at the University of London Computer Centre is gratefully acknowledged. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



T
ab

le
 1

 
T

he
 

M
D

 L
J 

m
od

ul
i 
G,
 

an
d 
K,

 
co

m
pa

re
d 

w
ith

 
th

e 
pr

ed
ic

tio
ns

 f
ro

m
 t

he
 

R
ee

Z
z 

(r
es

) 
an

d 
N

ic
ho

la
s 

et
 

a1
.” 

(n
es

) 
eq

ua
tio

ns
 

of
 

st
at

e,
 

us
in

g 
th

e 
pr

es
su

re
 

an
d 

in
te

rn
al

 
en

er
gy

. 
PY

, 
H

N
C

 
an

d 
R

Y
 

de
no

te
 

th
e 

so
lu

tio
ns

 f
ro

m
 

th
e 

Pe
rc

us
-Y

ev
ic

k,
 H

yp
er

ne
tte

d 
ch

ai
n 

an
d 

R
og

er
s-

Y
ou

ng
 c

lo
su

re
s.

 T
he

 m
od

ul
i 

in
 

br
ac

ke
ts

 a
re

 
fr

om
 in

de
pe

nd
en

t M
D

 si
m

ul
at

io
ns

. 

M
et

ho
d 

T 
P 

E
/k

T 
PV

jN
kT

 
zT

 
G

m
 

G
, 

-M
D

 

re
s 

ne
s 

PY
 

H
N

C
 

RY
 

re
s 

ne
s 

PY
 

H
N

C
 

R
Y

 
re

s 
ne

s 
PY

 
H

N
C

 
R

Y
 

re
s 

ne
s 

PY
 

H
N

C
 

RY
 

re
s 

ne
s 

PY
 

H
N

C
 

R
Y

 

re
s 

ne
s 

PY
 

H
N

C
 

R
Y

 

1.
45

62
 

0.
3 

1.
45

62
 

0.
3 

1.
45

62
 

0.
3 

1.
45

62
 

0.
3 

1.
45

62
 

0.
3 

1.
45

62
 

0.
52

49
 

1.
45

62
 

0.
52

49
 

1.
45

62
 

0.
52

49
 

1.
45

62
 

0.
52

49
 

1.
45

62
 

0.
52

49
 

1.
45

62
 

0.
86

3 
1.

45
62

 
0.

86
3 

1.
45

62
 

0.
86

3 
1.

45
62

 
0.

86
3 

1.
45

62
 

0.
86

3 

1.
45

62
 

1.
00

17
 

1.
45

62
 

1.
00

17
 

1.
45

62
 

1.
00

17
 

1.
45

62
 

1.
00

17
 

1.
45

62
 

1.
00

17
 

2.
69

74
 

0.
4 

2.
69

74
 

0.
4 

2.
69

74
 

0.
4 

2.
69

74
 

0.
4 

2.
69

74
 

0.
4 

2.
69

14
 

0.
69

93
 

2.
69

74
 

0.
69

93
 

2.
69

74
 

0.
69

93
 

2.
69

14
 

0.
69

93
 

2.
69

74
 

0.
69

93
 

0.
19

6 
0.

08
3 

0.
05

5 
0.

04
3 

0.
04

7 
-0

.8
39

 
-0

.8
91

 
-
 0.

89
8 

-0
.8

87
 

-0
.8

93
 

-
 2.

23
4 

-2
.2

24
 

-2
.2

14
 

-
 1.

93
9 

-2
.1

15
 

-2
.4

13
 

-
 2.

42
4 

-2
.5

14
 

-
 1.

87
6 

0.
61

9 
0.

62
0 

0.
6 

19
 

0.
62

4 
0.

62
 1 

0.
03

2 
0.

03
6 

0.
03

5 
0.

12
7 

0.
06

6 

-
 2.

27
9 

0.
45

3 
0.

45
2 

0.
50

1 
0.

49
3 

0.
49

2 
0.

48
2 

0.
47

6 
0.

74
4 

0.
80

3 
0.

76
6 

3.
85

5 
3.

78
4 

4.
14

8 
5.

62
2 

4.
67

1 

7.
97

4 
7.

81
2 

7.
50

4 
10

.7
90

 
8.

73
0 

1.
17

8 
1.

16
5 

1.
22

8 
1.

26
2 

1.
23

4 

2.
60

4 
2.

53
1 

2.6
 1

2 
3.

18
1 

2.
78

0 

9.
56

 
5.

09
 

3.
98

 
6.

08
 

5.1
2 

0.
60

 
0.

68
 

0.
69

 
0.

86
 

0.
77

 
0.

04
5 

0.
04

5 
0.

06
4 

0.
08

5 
0.

07
3 

0.
02

 1 
0.

02
2 

0.
02

9 
0.

04
5 

0.
03

5 
0.

51
0 

0.
53

2 
0.

51
9 

0.
55

5 
0.

54
0 

0.
11

5 
0.

11
7 

0.
13

4 
0.

15
9 

0.
14

6 

2.
46

 
2.

69
 

2.
8 I

 
2.

83
 

2.
82

 
8.

16
 

8.
34

 
8.

98
 

9.
07

 
9.

01
 

34
.5

4 
34

.2
1 

35
.5

3 
39

.4
3 

36
.9

0 

59
.3

7 
58

.7
4 

58
.0

3 
67

.9
4 

61
.7

4 

6.
22

 
6.

17
 

6.
38

 
6.

46
 

6.
39

 

24
.2

6 
23

.8
1 

24
.2

7 
26

.6
6 

25
.0

4 

(2
.7

1)
 

(8
.4

6)
 

(3
4.

09
) 

(5
8.

15
) 

(6
.2

2)
 

(2
3.

98
) 

K
, 
-
 

4.
49

 
4.

88
 

4.
25

 
4.

27
 

4.
25

 
14

.3
4 

14
.6

2 
14

.5
7 

14
.8

2 
14

.6
6 

67
.5

1 
66

.5
3 

67
.1

2 
77

.3
3 

70
.7

3 

12
2.

22
 

12
0.

69
 

11
5.

69
 

14
1.

79
 

12
5.

46
 

12
.9

1 
12

.8
0 

11
.1

2 
11

.3
3 

11
.1

6 

50
.2

6 
49

.2
3 

46
.5

3 
56

.6
5 

48
.5

2 

K
, 

-M
D

 

(4
.0

6)
 

(1
3.

37
) 

(6
3.

64
) 

( 1
 16

.2
7)

 

(1
0.

15
) 

(4
5.

88
) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



re
s 

ne
s 

P
Y

 
H

N
C

 
R

Y
 

re
s 

ne
s 

PY
 

H
N

C
 

R
Y

 
re

s 
ne

s 
PY

 
H

N
C

 
R

Y
 

re
s 

re
s 

PY
 

H
N

C
 

R
Y

 
re

s 
ne

s 
PY

 
H

N
C

 
R

Y
 

re
s 

ne
s 

PY
 

H
N

C
 

R
Y

 
re

s 
ne

s 
PY

 
H

N
C

 
R

Y
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

2.
69

74
 

6.
0 

6.
0 

6.
0 

6.
0 

6.
0 

6.
0 

6.
0 

6.
0 

6.0
 

6.
0 1.
06

 
1.

06
 

1.
06

 
1.

06
 

1.
06

 

1.
06

 
1.

06
 

1.
06

 
1.

06
 

1.
06

 

0.
72

2 
0.

72
2 

0.
72

2 
0.

72
2 

0.
72

2 

0.
95

34
 

0.
95

34
 

0.
95

34
 

0.
95

34
 

0.
95

34
 

1.
06

 
1.

06
 

1.
06

 
1.

06
 

1.
06

 

0.
93

55
 

0.
93

55
 

0.
93

55
 

0.
93

55
 

0.
93

55
 

1.
18

 
1.

18
 

1.
18

 
1.

18
 

1.
18

 

0.
73

 1 
0.

73
1 

0.
73

1 
0.

73
1 

0.
73

 1 

0.
84

8 
0.

84
8 

0.
84

8 
0.

84
8 

0.
84

8 

0.
84

42
 

0.
84

42
 

0.
84

42
 

0.
84

42
 

0.
84

42
 

-0
.1

32
 

-0
.1

24
 

-
 0.

26
2 

0.
18

7 
-0

.0
90

 

0.
01

2 
0.

02
0 

0.
27

9 
0.

52
0 

-0
.0

03
 

1.
18

41
 

1.
18

11
 

1.
14

42
 

1.
36

71
 

1.
19

65
 

1.
68

60
 

1.
67

48
 

1.
36

42
 

2.
16

12
 

1.
60

45
 

-
 3.

23
48

 
-3

.2
81

5 
-
 3.

20
20

 
-3

.1
27

8 
-3

.1
74

4 

-3
.9

19
0 

-
 3

.9
23

0 
-
 3

.8
43

8 
-3

.6
12

4 
-
 3.

75
47

 

-6
.9

12
6 

-
 6.

92
65

 
-
 6.

68
50

 

-
 6.

63
30

 
-
 6.

56
69

 

6.
29

0 
6.

22
5 

5.
39

9 
7.

92
4 

6.
43

4 

9.
04

8 
8.

97
6 

7.
25

5 
11

.5
87

 
8.

81
7 

5.
29

98
 

5.
22

59
 

5.
10

11
 

6.
16

71
 

5.
30

55
 

9.
71

68
 

9.
64

42
 

8.
05

25
 

9.
22

82
 

0.
53

16
 

0.
57

22
 

1.
52

44
 

1.
76

87
 

1.
56

74
 

2.
50

23
 

2.
44

99
 

3.
25

98
 

4.
51

31
 

3.
80

03
 

0.
19

64
 

0.
19

44
 

2.
76

91
 

2.
73

65
 

2.
77

33
 

11
.9

80
 

0.
03

7 
0.

03
7 

0.
04

5 
0.

06
 1 

0.
05

0 

0.
02

4 
0.

02
4 

0.
02

9 
0.

04
2 

0.
03

4 

0.
05

7 
0.

05
7 

0.
05

2 
0.

07
9 

0.
06

6 

0.
02

65
 

0.
02

65
 

0.
02

49
 

0.
04

05
 

0.
03

21
 

0.
1 

13
5 

0.
11

66
 

0.
20

15
 

0.
26

88
 

0.
23

52
 

0.
04

49
 

0.
04

68
 

0.
08

6 
0.

10
42

4 
0.

09
18

 

0.
04

3 
0.

05
0 

0.
12

5 
0.

16
4 

0.
14

2 

63
.5

3 
62

.9
3 

58
.2

6 
72

.2
0 

64
.1

3 

92
.3

 1 
91

.5
9 

80
.9

4 
10

7.
13

 
90

.5
4 

86
.5

3 
85

.3
7 

84
.2

6 
96

.2
0 

86
.2

9 

18
5.

90
 

18
4.

74
 

16
1.

49
 

2 1
7.

62
 

17
8.

29
 

17
.3

0 
17

.5
6 

19
.4

8 
19

.7
7 

19
.4

8 

28
.3

3 
28

.2
1 

30
.0

49
 

32
.4

31
 

31
.1

22
 

23
.7

5 
23

.7
9 

27
.7

9 
27

.3
9 

27
.6

5 

(6
2.

70
) 

(9
1.

87
) 

(8
5.

10
) 

(1
 83

.4
4)

 

(1
 7.

43
) 

(2
8.

14
) 

(2
3.

76
) 

13
8.

24
 

13
6.

90
 

1 1
9.

73
 

15
5.

94
 

13
4.

83
 

20
5.

60
 

20
3.

99
 

17
0.

67
 

23
9.

09
 

19
5.

60
 

20
3.

71
 

20
0.

94
 

18
6.

47
 

21
 8.

34
 

19
2.

15
 

44
7.

43
 

44
4.

47
 

36
9.

01
 

51
8.

18
 

41
3.

67
 

29
.6

5 
30

.1
6 

33
.2

8 
34

.1
5 

33
.3

5 

51
.7

2 
5 1

.4
2 

54
.1

4 
60

.3
67

 
56

.9
05

 

39
.8

3 
39

.8
9 

48
.4

9 
47

.7
6 

48
.2

4 

(1
 3 

1.
16

) 

(1
98

.8
6)

 

(1
 89

.1
2)

 

(4
27

.2
1)

 

(2
8.

3 
1 )

 

(4
9.

42
) 

(3
8.

56
) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



130 D. M. HEYES 

References 

1. J.-P. Hansen and I. R. McDonald, Theory ofSimple Liquids, (Academic Press, London, 1986) 
2. D. M. Heyes, Phys. Rev. B, 37. 5677 (1988). 
3. D. M. Heyes, J .  Chem. SOC. Faraday Trans 11, in press. 
4. M. J. Gillan, Mol. Phys., 38, 1781 (1979). 
5. F. Mandel, R. J.  Bearman and M. Y. Bearman, J .  Chem. Phys., 52, 3315 (1970). 
6. F. Mandel and R. J. Bearman, J .  Chem. Phys., 50, 4121 (1969). 
7. R. 0. Watts, J .  Chem. Phys., 50,4122 (1969). 
8.  A. A. Broyles, J .  Chem. Phys., 35,493 (1961). 
9. R. 0. Watts, J .  Chem. Phys., 47, 2709 (1969). 

10. D. Levesque, Physica, 32, 1985 (1966). 
1 I. J. A. Barker and D. Henderson, Ann. Rev. Phys. Chem., 439 (1972). 
12. F. Gallerani, G. L. Vecchio and L. Reatto, Phys. Rev. A ,  32, 2526 (1985). 
13. J. A. Barker, D. Henderson and R. 0. Watts, Phys. Lett., 31A, 48 (1970). 
14. J. A. Barker and D.  Henderson, Rev. Mod .  Phys., 48, 587 (1976). 
15. F. J. Rogers and D. A. Young, Phys. Lett .  102A, 303 (1984). 
16. R. Zwanzig and R. D. Mountain, J .  Chem. Phys., 43,4464 (1965). 
17. M. J. Grimson, Mol. Phys., 59, 737 (1986). 
18. D. M. Heyes, J .  Chem. Soc., Faraday Trans. ! I ,  83, 1985 (1987). 
19. K.  D. Hammonds and D. M. Heyes, J .  Chem. SOC. Faraday Trans. 2, 84, 705 (1988). 
20. D. MacGowan and D. M. Heyes, Mol. Sim., 1, 277, (1988). 
21. J. J. Nicholas, K. E. Gubbins, W. B. Street, and D. J. Tildesley, Mol. Phys., 1979, 37, 1429. 
22. F. H. Ree, J .  Chem. Phys, 1980.73. 5401. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


